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Exact solutions oft he multidimensional derivative 
nonlinear Schrodinger equation for many-bo d y systems 
near criticality 

Peter A Clarksont and J A Tuszyriskit 
t Department of Mathematics, University of Exeter, Exeter EX4 4QE, UK 
$ Department of Physics, The University of Alberta, Edmonton, Alberta, T6G 2J1, 
Canada 

Received 2 1  March 1990 

Abstract. We investigate the problem of strongly interacting many-body systems 
near criticality as recently described in terms of nonlinear dynamics by Dixon and 
Tuszyriski. We show that in the f i s t  order of approximation, the equation of motion 
for the order parameter can be mapped on the derivative nonlinear SchrSdinger 
equation and thus can be solved exactly. We solve the equations both in the absence 
and presence of current densities. 

1. Physical introduction 

In a series of two recent papers (Tuszynski and Dixon 1989, Dixon and Tuszynski 1989) 
a new method has been presented to treat strongly interacting many-body systems 
described using the generic effective Hamiltonian in the form 

where q i  and q1 are creation and annihilation operators with k and I ,  respectively. 
A large number of important physical systems can be described using this type of 
Hamiltonian, e.g., conduction electrons in a metal, superconductors, superfluids, an- 
harmonic crystal lattices, ferromagnets, etc. This approach applies to  both fermions 
and bosons. The method proposed consists of expanding the interaction coefficients w 
and A in a Taylor series in powers of momentum components with respect t o  a critical 
point (v0,  k,, mo) in momentum space. A quantum field operator is defined as 

k 

where R is the volume of the system. Subsequently, a Heisenberg equation of motion 
can be calculated for it through a commutation relation with HeR. Following standard 
techniques of quantum field theory (Jackiw 1977, Rajaraman 1987), the quantum field 
9 is decomposed into its classical component @ (the so-called field translation) and a 
quantum correction A ;  

* = @ + A .  (1.3) 
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4270 P A Clarkson and J A Tuszyliski 

Then, it can be shown that @ satisfies a classical (nonlinear) equation of motion while 
A satisfies a linear Schrodinger equation in which @ provides an effective potential. 

The meaning of the classical component @ is a field-theoretic analogue of the order 
parameter (Landau and Lifshitz 1959) and thus it plays a crucial role in describing 
the onset of criticality in the system. 

It has been shown (Dixon and Tuszyriski 1989) that in the regime of non-interacting 
particles @(a:, t )  satisfies the linear equation 

iIibt@ = vo@ + iv, * (v€@) - ~V:Q (1.4) 

where E represents the signatures of the space of independent variables. However, in 
the first non-trivial approximation (the so-called zeroth order) where the interaction 
parameter A is assumed to be a constant, the dynamics of @ is described by the cubic 
nonlinear Schrodinger (NLS) equation 

where 

f (V1 kl m) = 2Aq+m-k ,k ,m.  

It should be pointed out that equation (1.4) as a linear equation is easy to solve (for 
example using integral transform methods), while in 1 + 1 dimesions, i.e. one temporal 
and one spatial dimensions (so 0," = 62/6z2), equation (1.5) is the nonlinear Schro- 
dinger equation (NLS) which is a well known example of a completely integrable soliton 
equation solvable by inverse scattering (Zakharov and Shabat 1972). In addition, in 
3 + 1 dimesions, equation (1.5) has been recently analysed in detail by Gagnon and 
Winternitz (1988, 1989a,b,c) and Gagnon el a1 (1989) using the method of symmetry 
reduction (cf Bluman and Cole 1974, Olver 1986, Bluman and Kumei 1989). These 
studies provided a large number of exact solutions with very interesting geometrical 
forms in three-dimensional space. These include axial, cylindrical, spherical, coni- 
cal and even spiral types. Their functional dependence on the spatial and temporal 
variables, a: = (zI ,  zz, z3) and t respectively, is usually represented by Jacobi elliptic 
functions, often with a damping prefactor. In several cases these solutions can be 
regarded as localised when the limit of the Jacobi modulus k is taken with k i 1. 
Physically, this behaviour may be identified with the phenomenon of coherence in the 
system (Klauder and Skagerstam 1985). 

Going one step further one has to consider the interaction coefficients w and A to 
be momentum-dependent which physically means that the strength of the interactions 
depends on the distance between the particles. As a result, the equation of motion for 
the order parameter field @(a:, t ) ,  ignoring quantum effects, becomes 

iliat@ = vo@ + iv, (v€@) - $v:@ + vz(@*@)@ + 2iv, [@*@(v<@)]. (1.6) 
In the earlier work (Tuszyriski and Dixon 1989) solutions to equa.tion (1.6) have only 
been considered when @ ( a , t )  is represented as 

@(.,t) = 7l(a:,t)exP[iX(a:,t)] (1 .7)  
and when both the envelope q(z , t )  and the carrier wave x(z,t) propagate in orthog- 
onal directions to that 

v<q. vex = 0. (1.8) 
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This condition (and some additional constraints) allow one to  cast the equation for 
the envelope 77 in the form of a nonlinear Klein-Gordon (NLKG) equation. As a result, 
carrier waves are found in the form of plane waves and the corresponding envelopes 
may either be elliptic plane or cylindrical waves propagating in the plane normal to  
the propagation direction of the carrier (Dixon and Tuszyriski 1989). Again, the limit 
of k --+ 1 leads t o  the onset of localisation manifested by the creation of solitary waves. 

In the present paper we consider a more general version of equation (1.6). In the 
earlier work of Tuszyriski and Dixon (1989) the full quantum equation in first order 
was: 

i/id,Q = v,q + ivl  (vCq) - ~V:Q + v 2 q + q q  + iu, - Q ~ \ ~ ( v Q )  

+ iv, ~ ~ ( v Q ) Q  + v5 ( ~ q + ) q q .  (1.9) 

I t  was subsequently assumed that all two-particle collisions are perfectly elastic which 
meant the elimination of the last term (i.e. that  v5 = 0). However, we need not 
restrict ourselves t o  this case since the mathematical techniques available allow us to  
obtain exact analytical solutions in a more general case and moreover, the solutions 
we seek are not be constrained by condition (1.8). Thus, in classical approximation 
equation (1.9) becomes 

;hat@ = vo@+iv , .  (v~Q)  - ~v,2@+vz(Q*~)@+i i (v3+uq) .  (Q*@)Vip+iv, - (vo*)Q' 
(1.10) 

and our interest is in obtaining exact analytical solutions of this equation. We do this 
by considering similarity reductions of equation (1.10) which reduce i t  an ordinary 
differential equation. Painlevk analysis (see below) is then frequently used to  deter- 
mine whether the resulting ordinary differential equation is of PainlevC type (i.e. its 
solutions have no movable singularities other than poles). I t  appears to  be the case 
that whenever an ordinary differential equation arising from a similarity reduction of a 
given partial differential equation is of PainlevC type, then one can explicitly solve the 
ordinary differential equation and hence obtain exact solutions to  the original partial 
differential equation; whilst if the ordinary differential equation is not of PainlevC type, 
then usually one cannot solve it explicitly (cf Gagnon et a1 1989, Gagnon and Win- 
ternitz 1988, 1989a,b,c, Grundland et a1 1987, Skierski et a1 1988, 1989, Winternitz 
el a1 1987, 1988 for examples). 

The Painleve' conjecture (or Painleve' O D E  test) as formulated by Ablowitz et a1 
(1978, 1980) and Hastings and McLeod (1980) asserts that  every ordinary differential 
equation which arises as a similarity reduction of a nonlinear partial differential equa- 
tion solvable by inverse scattering is of Painleve' type, though perhaps only after a 
transformation of variables. Ablowitz et a1 (1980) and McLeod and Olver (1983) have 
given proofs of the PainlevC ODE test under certain restrictions. Subsequently, Weiss 
et a1 (1983) proposed the Painleve' PDE l es t  as a method of applying the PainlevC 
ODE test directly to  a given partial differential equation without having to  consider 
similarity reductions (which might not exist anyway). As for the PainlevC ODE test, 
a t  present there is no rigorous proof of the PainlevC PDE test; though a partial proof 
can be inferred from the partial proof of the PainlevC ODE test due to McLeod and 
Olver (1983). Despite being by no means foolproof, the Painlevk tests appear to pro- 
vide useful criteria for the identification of completely integrable partial differential 
equations. 
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Furthermore, in addition to providing a valuable first test for whether a given par- 
tial differential equation is completely integrable, other important information can be 
obtained by use of PainlevC analysis such as Backlund transformations, Lax  pairs, Hi- 
rota's bilinear representation, special and rational solutions for completely integrable 
equations and special and rational solutions for non-integrable equations (Cariello and 
Tabor 1989, Chudnovsky et a1 1983, Conte 1988, Conte and Musette 1989, Fournier e t  
a1 1988, Fournier and Spiegel 1987, Gibbon et  a1 1985, Gibbon e t  a1 1988, Levine and 
Tabor 1988, Newel1 e t  a1 1987, Nozaki 1987, Weiss 1983, 1984a,b, 1985a,b, 1986a,b, 
1987). 

2. Mathematical background 

In 1 + 1 dimensions, equation (1.10) reduces to 

ih@, = vo@ + iv1Qz - $@ss + v2@*;ip2 + i(v3 + v,)@*@@,, + iv5@@; (2.1) 

where vo, vl, v2, v3, v4 and v5 are arbitrary constants, with either v3 + v4 # 0 or 
v5 # 0. If in (2.1) we make the transformation 

@(x, t )  = U(<,  7) exp[-ivot/h] (2.2a) 

with 

E = 2 + v l t / h  7- = -t/(2h) (2.2b) 

then U(<, 7) satisfies 

iu, = uCE - 2i(v3 + v,)u*uuC - 2iv5u2uU; - 2v2u*u2. (2.3) 

This equation is a special case of the generalised mixed nonlinear Schrodinger equation 
(GMNLS) 

iu7 = uEC + iau*uuf + ibu2uU; + cuf2u3 + du*u2 (2.4) 

with a,  b, c and d real constants, which was discussed by Clarkson and Cosgrove (1987) 
and arises in the modulation of Stokes waves of uniform depth near the marginal 
state (see Johnson 1977, Kakutani and Michihiro 1983, Parkes 1987). The GMNLS 
additionally has as special cases both the generalised derivative nonlinear Schrodinger 
equation (GDNLS) 

iu, = uEE + iau*uuC + ibu'u; + C U * ~ U ~ .  (2.5) 

which was also discussed by Clarkson and Cosgrove (1987), and the mixed nonlinear 
Schrodinger equation (MNLS) due to Wadati e t  a1 (1979) 

iu, = uEC + ib(u*u2)( + du*u2. (2.6) 

The MNLS (2.6) itself is a combination of two completely integrable soliton equations 
which are solvable by inverse scattering, namely the nonlinear Schrodinger equation 

iu, = tiEE + du*u2 (2.7) 
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(Zakharov and Shabat 1972), and the derivative nonlinear Schrodinger equation 
(DNLSI - see below for second and third cases) 

iu, = uFE + ib(u*u2)c 

(Kaup and Newel1 1978), though as shown below, MNLS is equivalent t o  DNLSI under 
a point transformation (see also Kundu 1984). 

Clarkson and Cosgrove (1987) determined under what conditions the GMNLS (2.4) 
and GDNLS (2.5) might be completely integrable (i.e. solvable by inverse scattering). 
They showed that the Painlevd PDE test due to  Weiss et a1 (1983) suggests that  a 
necessary condition for both equations (2.4) and (2.5) t o  be completely integrable is 
that  

c = ib(2b - U). 

iu, = uEE + iuu*uu{ + ibu'u; + ib(2b - u)u*'u3 + du*u2 

(2.9) 

Under this condition, equations (2.4) and (2.5) respectively become 

(2.10) 

and 

iu, = utE + iuu*uuE + ibu'u; + ib(2b - u)u*'u3 (2.11) 

which Kundu (1984) calls the 'higher-order nonlinear Schrodinger equation'. Clearly, 
equation (2.11) contains DNLSI (U = 2b), a second derivative nonlinear Schrodinger 
equation (DNLSII) due to  Chen et a1 (1979) 

iu, = uEE + iau*uuF (2.12) 

and a third derivative nonlinear Schrodinger equation (DNLSIII) due to  Gerdjikov and 
Ivanov (1982) 

iu, = ucE + ibu'u; + $ ~ ' u ' ~ u ~  (2.13) 

as special cases. However, GDNLS is not a non-trivial generalisation since if in (2.11) 
we make the U(l)  gauge transformation due to  Kundu (1984) 

q e ,  .) = .(E, 7) exp(ik$) (2.14) 

where k is a real parameter and the potential $(e,.) is defined by 

= u*u 

$, = i(uu; - u*uE) + ;(U + b)u*'u' 

then ii((, 7) satisfies 

where 

(2.154 

(2.15b) 

( 2 . 1 6 ~ )  
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Here, choosing k = i (2b  - U ) ,  k = %b and k = $a  gives DNLSI, DNLSII and DNLSIII, 
respectively. This shows that (2.11), DNLSI, DNLSII and DNLSIII are all equivalent. 
The equivalence of DNLSI and DNLSII apparently was first noticed by Wadati and 
Sogo (1983), although the transformation is implied in the work of Kaup and Newell 
(1978) - see their equations (11) and (12). Whilst DNLSII does not appear explicitly 
in Kaup and Newell (1978), their variables Q and R solve (2.12) with Q = U * ,  R = U ,  

a = 1. Wadati and Sogo (1983) also found the Miura-type Backlund transformation 
relating solutions of DNLSI, DNLSII and NLS (see Clarkson and Cosgrove (1987) for 
details in the present notation). 

Kaup and Newell (1978) solved the initial value problems for DNLSI (2.8) with the 
boundary condition 

4 E I T )  + 0 as IEl -+ 00 (2.17) 

using an inverse scattering formalism of Zakharov-Shabat type. This has subsequently 
been extended to the boundary conditions 

U ( [ ,  r )  + constant as 151 + CO (2.18) 

(Kawata and Inoue 1978) and 

U ( [ ,  r )  + (constant) exp[i(k( - U T ) ]  as Itj ---+ 00 (2.19) 

(Kawata et a1 1980). Chen et a1 (1979) and Dodd and Fordy (1984) write down 
associated linear problems for DNLSII (2.12) but do not solve the equation. Hence 
Clarkson and Cosgrove (1987) concluded that condition (2.9) is at least sufficient for 
complete integrability and conjectured that GDNLS (2.5) is nonintegrable otherwise 
due to the nature of the singularities of U ( < ,  r )  which arise in PainlevC analysis when 
(2.9) does not hold. 

If in GMNLS (2.4) we make the Lie-point transformation 

~ ( i ,  f )  = U(<, r )  exp[-i(cu< + a2.)] (2.20a) 

with 
- ( = E + 2cYr r = r  ( 2.20 b )  

then G((,  ?) satisfies an equation of the same form with 
- - - a = a  b = b  E = c  d = d - a ( a - b ) .  (2.21) 

This shows that by choosing cu = d / ( a -  b ) ,  provided that a # b ,  the point transforma- 
tion (2.20) maps the GMNLS (2.4) into the GDNLS (2.5). (In particular, as mentioned 
previously, the MNLS (2.6) is thus equivalent to DNLSI.) The transformation (2.20) was 
used by Kawata et  al (1980) to  solve the initial value problem for DNLSI by inverse 
scattering with the boundary condition (2.19), which was more general then the ear- 
lier treatments by Kaup and Newell (1978) and Kawata and Inoue (1978) with the 
boundary conditions (2.17) and (2.18), respectively. Additionally, the GMNLS (2.4) 
also admits the gauge transformation (2.14, 15), irrespective of the value of d ,  the new 
parameters being 

- 
? 1 = a - 2 k  b = b - 2 k  2 = c +  $k(u - 3b) + k2 d =  d. (2.22) 
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Hence if a = b and c = r b 2  then GMNLS is equivalent to  NLS, and so is integrable; 
whilst if a = b and c # ab', then GMNLS does not pass the PainlevC PDE test, and so is 
probably not integrable. Consequently, Clarkson and Cosgrove (1987) concluded that 
(2.9) is also a sufficient condition for the GMNLS (2.4) t o  be completely integrable. 
Furthermore, they write down the associated linear problem for GMNLS under the 
restriction (2.9) (i.e. equation (2.10)), together with the effects of the gauge and point 
transformations, so that  one can readily adapt the inverse scattering formalisms of 
Kaup and Newel1 (1978), Kawata and Inoue (1978) and Kawata et a1 (1980) to  any 
of the integrable members in the GMNLS or GDNLS families. 

These results show that equation (2.3) (and hence also (2.1)) is completely inte- 
grable only for two special cases namely v3 + v4 = 2v5 (in which case (2.3) is the MNLS 
and so is equivalent to  DNLSI) and v5 = 0 (when (2.3) is equivalent to  DNLSII). 

We shall now discuss the integrability of equation (1.10) in 3 + 1 dimesions, with 
either u3 + u4 # 0 or u5 # 0. First in (1.10) we make the transformation 

@(z, t )  = U(<, T )  exp[-ivot/h] ( 2 . 2 3 ~ )  

with 

< = z - ( t / h )  u1 7- = t/(2h) (2.23 b )  

where z = (xl, x 2 ,  x 3 )  and < = (t1 , t2 ,  t3). Then, U(€, T )  satisfies 

iu, = - V u  + 2i(v3 + u4) * ( U * U V U )  + 2iu5 ( u 2 v u * )  + 2vzu*u2 (2.24) 

where V k  = (vkl, vk2, vk3) for k = 3 , 4 , 5  (this shows that if both u3+u4 = 0 and u5 = 0 
then (1.10) is equivalent to the three-dimensional nonlinear Schrodinger equation). 
Now suppose that 

with X = (X,,X,,X,) an arbitrary constant vector, then U ( ~ , T )  satisfies 

which is the same as equation (2.3). It follows from the results for equation (2.3) that  
a necessary condition for (2.25) to  be completely integrable is that 

with yk  = X - u k ,  for k = 3 , 4 , 5 .  If otherwise then equation (2.25) is reducible to  an 
ordinary differential equation which is not of Painlev6 type (since it possesses solutions 
which have movable logarithmic branch points - see Cla,rkson and Cosgrove 1987). 
Therefore, the PainlevC ODE test due to  Ablowitz et a1 (1978, 1980) asserts that  a 
necessary condition for equation (2.24) to be completely integrable is that either 

u3 -I- u4 - 2u5 = 0 
or 

u5 = 0 

(2.27) 

(2.28) 
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since if neither (2.27) nor (2.28) holds, then one can choose X such that (2.26) also 
does not hold (e.g., if (v3 + u4 - 2v5) vs = 0, take X = u3 + u4 - u5, otherwise, take 
X = us). If either (2.27) or (2.28) holds, then in (2.24) we can assume, without loss 
of generality, that v2 = 0 since, if otherwise, we make the point transformation 

with 

(2.29a) 

(2.29 b )  

(More generally, this transformation maps equation (2.24) into an equation of the 
same form with v2 = 0,  provided that v3+v4 # v5.) Hence we have only two possible 
candidates for integrability, namely 

iu, = - V u  + 2i(v3 + v4) * v(u*u2)  

iu, = - V u  + 2i(v, + v4) (u 'uvu)  

(2.30) 

(2.31) 

which are (3 + 1)-dimensional generalisations of DNLSI and DNLSII, respectively. 
To discuss the integrability of equations (2.30, 31) consider the equation 

iu, = -V2u + ia . (u*uVu) + ib. (u2Vu*).  (2.32) 

Setting U ( < ,  7) = R(() exp[i(O(<) - p ~ ) ]  yields the coupled system 

2VR*VO+ RV2B - ( a +  b) . (R2VR) = 0 

V 2 R =  R(VB)2 - p R + ( b - a ) . ( R 3 V B ) .  

(2 .33~)  

(2.3 3 b )  

From (2.33a) we have 

VO = $R2(a  + b)  + (V4)/R2 (2.34) 

where 4 is any solution of Laplace's equation V24 = 0 and then (2.33b) becomes 

V2R = &(5b2 + 2 a . b -  3a2)R5 + [p + i (3b -  a ) . V 4 ] R +  (V4)2/R3. (2.35) 

In the case of spherical symmetry, R = R(r) with T = ,/-, this reduces to 

R3 ' 

d2R 2 d R  1 
dr2 r d r  16 
- + -- = -(5b2 + 2a .  b -  3a2)R5 + a ) . V o ] R +  (2.36) 

It is easily shown that the equation 

- d2R + - 2 d R  - = CYR' + PR + - Y 
dr2 r d r  R3 

(2.37) 

with CY,  P and 7 constants such that either CY # 0 or # 0,  is not of PainlevB type 
and so, in general (2.36) is not of PainlevC type either. Hence the PainlevC ODE test 
predicts that neither of equations (2.30) and (2.31) can be completely integrable. This 
together with the earlier results show that the PainlevC tests suggest that ,  in 3 -+ 1 
dimesions, equation (1.10) is not completely integrable. However, the equation may 
be regarded as being 'partially integrable' since some special reduct,ions are integrable. 
In the following section we present some such reductions and their explicit solutions. 
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3. Reductions resulting in explicit solutions 

3.1. Propagating wave solutions 

The starting point in search for new reductions is equation (1.10). We first look for 
solutions in the form of plane waves, both for the carrier and the envelope, i.e. we 
assume that: 

a(%, t )  = R(z ,  t )  exp[i@(z, t ) ]  
where 

with 
qz, t )  = ~ ( 5 )  e(%, t )  = e(<) - At 

( = n * x - w t  E nlxl + n2x2 + n3x3 - wt 

and n = (nl, n2, n3)  a unit vector describing the direction of propagation. The first 
step is to substitute equation (3.1) into equation (1.10) and decouple the real and 
imaginary parts to get 

AR, = v 1 * V R -  ~ ( 2 V R . V @ + R V 2 0 ) + ( v 3 + ~ , + v 5 ) . ( R 2 V R )  (3.4) 

for the imaginary part, and 

- me, = v o ~  - v l .  (RVO) - $ V ~ R  + $ R ( V @ ) ~  + U , R ~  - (v3 + u4 - u5) ( R ~ V O )  
(3.5) 

for the real part. Then, making use of equations (3.2) and (3.3) for the present 
reduction yields two coupled ordinary differential equations 

- w ~ ~ /  = P 1 ~ /  - 

- q w e r  + X)R = V,R - PIRei - 
+ $el l )  + (p3 + p4 + ( 3 4  

(3.7) + iqei)2 + V ~ R ~  + (p5  - p3 - 

with := d/dE and p j  = n uj for j = 1,3,4,5. Equation (3.6) can be rearranged and 
integrated once to  give 

with C an integration constant. Upon substituting equation (3.8) into equation (3.7) 
we obtain a second-order ordinary differential equation in terms of R only, i.e. 

This equation can be readily integrated once to yield 
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Table 1. Solutions of the equation: (dW/do2 = c(W - a)(W - b)(W - c ) ( W  - d )  
where c = fl and a ,  b ,  c ,  d may be real or complex. 

Solution and corresponding figure Condition 

Figure l ( a )  d < W 5 c < b < a 

g = 2 / [ ( a  - c ) ( b  - d)l1I2 

d(a  - c) + 4 ( c  - d )  sn2(</g; k )  
( a  - c )  + ( c  - d )  sn2(Ug; I C )  

€ = - I  w =  

( 4  - b ) ( c  - d )  
(a - c ) ( b  - d )  

k2 = 

c(b - d )  - b(c - d)sn2(</g; I C )  
( b  - d )  - ( c  - d)sn2(</g; I C )  

W =  Figure l ( b )  d 5 W < c < b < a 

g = 2 / [ ( a  - c ) ( b  - d)] ' / '  
( a  - b ) ( c  - d )  
( a  - c)(b - d )  

k2 = 

b(a  - c )  - c(a - b )  sn2(</g; k )  
( a  - c )  - ( a  - b)sn2(</g;k) 

W =  Figure l ( c )  d < c < b < W 5 a 

g = 2 / [ ( a  - c ) ( b  - d ) ] ' l 2  
( a  - b ) ( c  - d )  
( a  - c ) ( b  - d )  

k2 = 

a ( b  - d )  + d ( a  - b)sn2(</g; I C )  
( b  - d )  + ( a  - b )  sn2(</g; I C )  

W =  Figure 1 ( d )  d < c < b 5 W < a 

g = 2 / [ ( a  - c ) ( b  -  CL)]'/^ 

A2 = ( a  - R ~ c ) ~  + ( I m c ) 2  
B2 = ( b  - Rec)2 + (Imc)2 

g = 1/(AB)'/' 
a - b ) 2  - ( A  - B ) 2  

+%AB 
k2 = ( 

with D an integration constant. To simplify the analysis of its solutions further, we 
make the substitution W = R2 which results in a standard elliptic form 

In table 1 we have listed all the solutions to the above equation type and illustrated 
them with graphical representations in figure 1. It should be noted, however, that  
strictly speaking R 2 0 and consequently W 2 0,  so that one must take IWI for 
solutions in table 1 which are obtained when W is of arbitrary sign (but real). Another 
comment concerning solutions in table 1 is that virtually all of them are expressed in 
terms of Jacobi elliptic functions (cf Whittaker and Watson 1927). Depending on the 
number and location of real roots of the quartic polynomial on the right-hand side 
of equation (3.11) the solutions may be singular or regular. If a particular solution 
corresponds to only one real root, then it is singular. If, on the other hand, it oscillates 
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Solution and corresponding figure Condition 

d ( ~  - c) - c(4 - d)sn2(</g; k) 
( R  - c) - ( a  - d )  sn2(</g; k) 

e = + 1  w =  Figure l (f)  W < d < c < b < a. 

9 = 2 / [ ( R  - c)(b - d)] ' / '  

c(b-d) -d(b-c)sn2(</g;k)  
( b  - d )  - ( b  - c) snZ(</g; k) 

W =  

b(a  - c) - a(b - c) sn'(</g; k) 
( R  - c) - (b  - c) sn2(</g; k) 

W =  

Figure l (g)  d < c < W 5 b < a 

g = 2 / [ ( a  - c)(b - d)I1I2 
k 2  ( a  - d ) ( b  - c) 

( a  - c)(b - d )  

Figure l ( h )  d < c 5 W < b < R 

g = 2 / [ ( e  - c)(b - d) ] ' / '  

k2  
( a  - d ) ( b  - C) 

( R  - c)(b - d )  

a(b- d ) -  b(a-d)sn2(</g;k) 
(b  - d )  - ( R  - d )  sn2((/g; k) 

W =  Figure l ( i )  d < c < b < R < W 

g = 2 / [ ( a  - c)(b - d ) ] 1 / 2  

lc2 ( 4  - d ) ( b  - c) 
( R  - c)(b - d )  

B 2  = ( b  - Rec)2 f (Imc)2 

- ( A  + B I Z  - ( a  - b I 2  
= I / ( A B ) ~ J ~  

k -  
4AB 

between two real roots, it is regular. In the limit of the Jacobi modulus 6 + 1, the 
real solutions tend to  solitary waves since 

sn(z,  1) = tanh z and cn(z, 1) = sech z 

Due to the requirement that  R 2 0,  some of the kink solutions (when both turning 
points are positive) will remain of kink type. Those, however, which involve two 
turning points of opposite sign will become cusp-like. 

3.2. Scaling reduction 

In section 2 it has been demonstrated that ,  without loss of generality, the equation 
of motion, equation ( l . l O ) ,  can be transformed into a simpler-looking equation, i.e. 
equation (2.32), which will be our starting point in the search for scale-invariant 
reductions. (We shall assume that either a # 0 or b # 0 in equation (2.32) since, if 
otherwise, then it is just a linear equation.) Representing the dependent variable U in 
Euler form 
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Figure 1. Plots of (W’)2 against W for solutions of the equation (W’)2 = c(W - 
a)(W - b)(W - c)(W - d )  corresponding to table 1. 

and separating the real and imaginary parts gives the following two coupled partial 
differential equations 

R, = -2VR. VO - RV20 + (a + b)  (R2VR)  (3.13) 

-ROT = - V 2 R + R ( V O ) 2 + ( b - ~ ) * ( R 3 V O ) .  (3.14) 

We then look for T )  and in the form 

R(& T )  = T -  1/4R(rl) 

O ( € ,  T )  = q7) + y In T 

(3.15) 

(3.16) 

with y a constant and where the new independent variable rl (the symmetry variable) 
is given by 
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with n2 = 1. Substituting (3.15)-(3.17) into (3.13) and (3.14) results in two coupled 
ordinary differential equations in terms of R and 8, i.e. 

- ( a R + i q R ’ )  =-2R’O’- R 8 ” + ( a . n + b . n ) R 2 R ’  (3.18) 

(iqRO’ - y R )  = -R” + R(6’)’ + ( a  - p)R38’ (3.19) 

with ‘ := d/dq and a := a n and ,B := b - n. Equation (3.18) can be recast as 

(R’B’)’ = $(qR2)’ + $(p  + cr)(R4)’ 

O ’ ( q )  = 
whence 

+ i ( P  + a )R2  + C/R2 

(3.20) 

(3.21) 

where C is an arbitrary integration constant. This can then be substituted into equa- 
tion (3.19) to  produce a non-autonomous ordinary differential equation in terms of 
R(V) only 

R’’(v) = & ( / 3 + ( ~ ) ( 5 ~ . - 3 3 p ) R ~ +  f ( a - / 3 ) q R 3 + [ ~ +  i C ( 3 p - a ) -  &q2]R+C2/R3. 
(3.22) 

There are two cases to  consider. 

Case 1. a # p (i.e. a * n # b .  n). In this case the transformation 

(3.23) 

maps equation (3.22) into 

B -- d2W - 1 (E) + ( a  :[2(3a3)2 ”)W3 + 4ZW2 + 2(Z2 - A)W + - (3 .24~)  2 

dZ2 - 2 W  dZ W 
with 
A = -i[4y + 2C(3p - a)]  (3,243) 

It is easily shown that  a necessary and sufficient condition for equation (3.24) to  be 
of Painlev6 type is @(a - 2p) = 0,  i.e. if and only if a, b and n satisfy the constraint 

and B = 4&(1+ i) C2(a - p). 

b . n ( a . n  - 2 b - n )  = 0. (3.25) 

If this condition holds then (3.24) is the fourth Painlev6 (PIV) equation (cf Ince 1956) 

B -- d2W - 1 (%) + $W3 +4ZW2 + 2(Z2 - A)W + 
dZ2  2W d Z  

2 
(3.26) 

with A ,  B arbitrary constants (since y and C are arbitrary); otherwise solutions of 
(3.24) possess movable logarithmic branch points. Clearly, if either b = 0 or a = 2b 
then (3.25) holds for all n, Otherwise, we require that either 

x A (a - 2b) 
la: A (a - 2b)l 

x A b  n =  or n = -  
12 A bl 

(3.27) 
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where x is any vector such that x A ( a  - 2b)  # 0 or x A b # 0 respectively, for the 
constraint (3.25) to be satisfied (recall n is a unit vector). 

To summarise, for all choices of a and b, there exist choices of n given by (3.27) 
such that equation (3.22) may be transformed into PIV. Conversely, for all a and b, 
unless either b = 0 or a = 2b, there exist vectors h such that (3.22) is not of PainlevC 
type. (Note that if either b = 0 or a = 2b, then equation (3.22) may be transformed 
into PIV for all choices n.) Since there exist rational solutions and one-parameter 
families of solutions of PIV (cf Airault 1979, Fokas and Ablowitz 1983, Gibbon et  a1 
1988, Clarkson 1990), then we can obtain exact analytical solutions for equation (2.32) 
through this scaling similarity reduction. 

Case 2. (Y = ,B (i.e. a . n  = b a n ) .  In this case the transformation 

~ ~ ( 7 )  = K W ( Z )  q = Jz(1+ i ) z  (3.28) 

maps equation (3.22) into 

B 2 

(3.29a) 
d 2 W  1 
d Z 2  - 2 W  d Z  W 
- - - (c) - 2iKzCu2w3 + 2(22  - A)W + - 

with 

A = -4i[y + CCY] B = 4 f i  (1 + i)C2/K2. (3.29 b )  

It is easily shown that this equation is of PainlevC type if and only if CY = 0,  i.e. if and 
only if 

a - n  = 0 (3.30) 

whence equations (3.18) and(3.19) simplify to 

(3.31) 

(3.32) 

(We remark that these equations also arise from the linearised version of equations 
(2.32),  i.e. 

iu, = -v2u (3.33) 

U((, T )  = T - ' / ~ R ( ~ )  exp{i[O(q) + y In T I >  q = (n  < ) / T ' / ~  (3.34) 
with y an arbitary constant and n an arbitrary unit vector.) Therefore for equation 
(3.29) to  be of Painlevk-type, we require that if a A b # 0 then n has tjhe form 

through the scaling reduction 

a A b  n = -  

or if a A b = 0 then n has one of the forms 
la A bl 

x A a  

x A b  n=-  

n = -  i f a f O  

i f b # O  

12 A al 

I* A bl 
where x is any vector such that x A a # 0 or x A b  # 0 respectively, in order that  the 
constraint (3.30) to  be satisfied. 
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4. Phenomenological equations with currents 

Tuszyriski and Dixon (1989) demonstrated that the zeroth-order approximation in the 
field theoretic treatment of the second-quantised Hamiltonian (1.1) corresponds to  the 
Landau-Ginzburg-Wilson Hamiltonian density, i.e. 

H = A,I@I2 + A,1@I4 + DIV@I2. (4.1) 

In fact, in an earlier paper, Otwinowski el a1 (1986) considered a corresponding 
Lagrangian density in the presence of currents flowing through the system and classical 
kinetic energy so that 

C = $ i K (  Qt@* - a@;) + f i p  . [( V@)@* - @( V@*)] + K I Q t  1' - DIV@I2 - A ,  / @ I 2  - A, [ @ I 4  
( 4 4  

where K is associated with the classical effective mass of the system, K and p are the 
external fields coupled to the two current densities. The latter quantities are defined 
through 

The Hamiltonian density that is obtained directly from C is 

H = i ip.  [@(V@*) - @*(V@)] + I<l@t12 + DIV@I2 + A,1@12 + A,I@14 (4.5) 

and it is easy to  verify that the extra term originates from the second-quantised 
Hamiltonian through the off-diagonal interactions of the form 

% , l a b /  

where IC # I .  In their paper, Otwinowski e t  a1 (1986) only considered solitary wave 
solutions of the corresponding (1 + 1)-dimensional Euler-Lagrange equation of motion 
for @. i.e. 

+ ip@, + Dace - - A 2 @  - A4I@l2@ = 0 (4.6) 

which they called this equation the nonlinear Dirac-Klein-Gordon equation. 

namely 
In this paper, we consider the ( 3  + 1)-dimensional analogue of equation (4.6),  

i d ? $  + i p s  V@ + DV2@ - - A,@ - A4I@l2@ = 0. (4.7) 

using the method applied in the previous sections in order to  generate new exact 
solutions. For simplicity, we rescale time and space variables so that 

t = rcf (z, y, %) = f i ( 2 ,  c ,  2) 

and denote 
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Table 2. Solutions of the equation: (dW/dO2 = c(W - a ) ( W  - b)(W - c) where 
c = fl and a, b,  c may be real or complex. 

Solution and corresponding figure Condition 

b(a - c) - c(a - b) sn2(E/g; k) 
(a - c) - (a - b) sn2(t/g; k) 

e = - 1  w =  Figure 2(a) c < b < W .( a 

g = 2/(a - c)1/2 

k2 = ( a  - b)/(a - c) 

c < b 5 W < a 

g = 2/(a - c)'f2 
W = a - (a - b) sn2(</g; k) Figure 2(b) 

k2 = ( a  - b)/(a - c) 

Figure 2(c) W 5 c < b < a 

g = 2/(Q - C ) ' l 2  

k2 = ( a  - b ) / ( a  - C )  

g = . - I 1 2  

k2 = ( A  - Reb + a)/(2A) 

c < W 5 6 < a e = +1 W = c +  (b - c)sn2((/g; k) Figure 2(e) 

g = 2/(" - c)1/2 

k2 = ( b  - .)/(a - C) 

b(a-c)-a(b-c)sn ' ( ( /g;k)  
( a  - c) - ( b  - c) sn2(t/g; k) 

W =  Figure 2 ( j )  c 5 W < b < c 

g = 2/(a - c)1/2 

k 2  = ( b  - . ) / (a - C) 

Figure 2(g) c < b < a 5 W 

g = 2/(a - c)1/2 

k2 = ( b  - .)/(a - C )  

= .-I12 

k2 = (A +- Re b - a ) / ( 2 A )  

W 2 a = b = c 

W 2 a > b = c 

c = b 2 W 2 a 

W = (4  + 
W = a -t ( a  - b )  tan[fr((a - b ) 1 / 2 ]  

W = a -t ( b  - U )  tanh(i<(b - a)] 

Figure 2(i) 

Figure 2 ( j )  

Figure 2 ( k )  

which transforms equation (4.7) into 

i@f + ib - $@ + e2@ - - A,@ - = 0. (4.8) 

@(Z, G , Z ,  l) = R(€)  exp[iB(f) - iwt] (4.9) 

We first make the following ansatz: 
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where < = n - 5 - yt and 
equation (4.8) to  yield 

= 1 and then separate the real and imaginary parts of 

- YR.‘ + jiP + ( 2 ~ w  + Re/l)(i - k y 2 )  - a W i i y ~ ’  = o (4.10) 

for the imaginary part and 

for the real part ,  with ji = ji - n and ‘ = d/d<. The first of the two equations can be 
integrated once to give 

(4.12) 

where C is an integration constant. Substituting this into equation (4.10) results in 
an ordinary differential equation in terms of R as 

- L A  ~4 + D = 0. 4 4  

Substituting W = R2 reduces equation 

i ( l - k . ~ ~ ) ( w ’ ) ~ +  + { w + ~ ~ k - A , +  

- LA 4 4  W 3 +  DW = 0. 

(4.13) 

(4.13) into a standard form 

(4.14) 

Solutions of this equation are tabulated in table 2 and illustrated in figure 2 for the 
reader’s convenience. They take the form of elliptic functions which in limiting cases 
may become hyperbolic (solitary waves) or trigonomet,ric for k - 0, respectively. 

5 .  Conclusions 

In this paper we have examined the equations of motion for the order parameter of 
many-body systems near criticality which arise in the first order of approximation 
when the interaction potential has a term linear in  momentum. In their recent paper 
Dixon and Tuszyriski (1989) were able to find only rather restrict,ive form of solutions 
in this case which assumed that carrier and envelope waves propagate in orthogonal 
directions. Here, we were able to generalise significantly these results by analysing 
the original equation of motion in the presence of inelastic scattering processes. The 
solutions found were obtained by mapping the problem on a derivative nonlinear 
Schrodinger equation and using both known and new types of solutions. The point 
of significance is that in 1 t 1 dimesions this equation is integrable and soliton solu- 
tions can always be found. We have also shown reductions in higher dimensions and 
tabulated the exact solutions of the reduced equations. 
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4w2 

' ( j ~  

Figure 2. Plots of 
4)(W - b)(W - c )  corresponding to table 2.  

against W for solutions of the equation (W')' = c(W - 

A further extension of the model was presented in section 4 where current densities 
were included resulting from off-diagonal interactions in the microscopic Hamiltonian. 
In this case, the problem is completely solvable in 1 + 1 dimesions and the solutions 
involve elliptic and hyperbolic functions, including solitary waves. 

The main conclusion is that the many-body problem for strongly interacting quan- 
tum systems appears to  be solvable near criticality in the next order of approximation 
of the coherent structures method. Dixon and Tuszyliski (1989) showed how it maps 
on the NLS equation in the zeroth order. Here, we have shown that i n  the first order 
of approximation the mapping relates it to another integrable equation: the DNLS 
equation. We intend to pursue the question of solvability of the problem to the second 
order in the near future. 
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